Abstract

AbstractNo‐till (NT) is a soil management system designed to protect soil resources from water erosion and provide numerous benefits compared to conventional tillage through the increase of organic matter inputs into the soil. However, NT in isolation is not sufficient to control erosion processes caused by an excessive production of surface runoff. This study evaluated soil losses on agricultural hillslopes under no‐till characterized by contrasted water, soil, and crop management conditions. To this end, water and soil losses were monitored between 2014 and 2018 at two scales, including four macroplots (0.6 ha; 27 events) and two paired zero‐order catchments (2.4 ha; 63 events). The resulting dataset covered a wide range of rainfall conditions that occurred in contrasted soil, crop, and runoff management conditions. Hyetographs, hydrographs, and sedigraphs were constructed, and these data were used to evaluate the impact of management on sediment yields, including that of terraces, scarification, and phytomass on sediment yield. The installation of terraces reduced sediment yield by 58.7%, mainly through surface runoff control. Crop management including an increased phytomass input efficiently controlled soil losses (63%), although it did not reduce runoff volume and peak flow. In contrast, scarification had no impact on runoff and soil losses. The current research demonstrated the need to combine the installation of terraces and leaving a high amount of phytomass on the soil to control surface runoff and erosion and reduce sediment yield. The current research therefore reinforces the relevance of the monitoring strategy conducted at the scale of macroplots and zero‐order catchments to evaluate the impact of contrasted water, soil, and crop management methods and select the most effective conservation agriculture practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.