Abstract

AbstractEarth system models are powerful tools to simulate the climate response to hypothetical climate intervention strategies, such as stratospheric aerosol injection (SAI). Recent simulations of SAI implement a tool from control theory, called a controller, to determine the quantity of aerosol to inject into the stratosphere to reach or maintain specified global temperature targets, such as limiting global warming to 1.5°C above pre‐industrial temperatures. This work explores how internal (unforced) climate variability can impact controller‐determined injection amounts using the Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection (ARISE‐SAI) simulations. Since the ARISE‐SAI controller determines injection amounts by comparing global annual‐mean surface temperature to predetermined temperature targets, internal variability that impacts temperature can impact the total injection amount as well. Using an offline version of the ARISE‐SAI controller and data from Earth system model simulations, we quantify how internal climate variability and volcanic eruptions impact injection amounts. While idealized, this approach allows for the investigation of a large variety of climate states without additional simulations and can be used to attribute controller sensitivities to specific modes of internal variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.