Abstract

Nitroaromatic compounds (NACs) are reduced by structural or surface bound Fe (II) species under anaerobic conditions in the subsurface. This reaction preferentially occurs on clay minerals which are mainly present in areas with low hydraulic conductivity containing nearly immobile water. Diffusion is the dominating transport process in these zones. Due to the complexity in such heterogeneous systems, the mathematical prediction of reactive solute transport taking into account diffusive mass exchange into immobile water regions still remains challenging. Therefore, the influence of immobile water regions on the fate of 4-Cl-Nitrobenzene (4-Cl-Nb) was quantified in dual-porosity column experiments at three different mean transit times under saturated anaerobic conditions in the presence of soluble Fe (II). A multi-tracer approach and a Single Fissure Dispersion Model (SFDM) were used to estimate input parameter to further model the transport of 4-Cl-Nb. Reactive solute transport of 4-Cl-Nb was quantified considering instantaneous sorption on to the clay matrix and a reduction within the immobile water region following first-order kinetics. The experimental results indicated that sorption onto the clay matrix enhanced the mass exchange of 4-Cl-Nb into immobile water region compared to nonreactive solutes. At the same time the abiotic reduction of 4-Cl-Nb limited the process of back diffusion to mobile water regions. Fitted retardation factors (Rim=4.62±0.68) and decay rates (k=1.51±0.08h−1) were independent on tested flow velocities. Findings of this study can advance the understanding on the fate of NACs in the subsurface which is essential for prediction of reactive solute transport at field scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.