Abstract

Climate variability and human activity are the two driving forces that alter the hydrological cycle and spatiotemporal distribution of water resources. Using the Taoer River Basin (TRB) as an example, this study analyzed the impacts of climate variability and human activities on streamflow discharge in various periods and the resulting hydrological alterations. First, historical streamflow data were divided into four periods (baseline period and altered periods 1, 2, and 3). Based on the proposed basic identification framework, four assessment methods (the hydrological sensitivity method, distributed hydrological model, linear regression model, and runoff restoring computation) are used and provided relatively consistent estimates of streamflow attribution. Climate variability is the driving factor for streamflow changes, and the relative contributions in altered periods 1, 2, and 3 are 81% (+ 50.34mm), 68% (+ 13.37mm), and 53% (-19.23mm), respectively. In addition, climate variability and reservoir construction have different impacts on the hydrological regime at different periods, and reservoir regulation's effect on the hydrological regime depends on climatic conditions. Combined with this case study, we further discuss the necessity of breakpoint selection and period subdivision in the attribution of streamflow changes, and analyze the applicability of different methods with current ideas for improvement. This study not only has practical significance for water resource planning and adaptive policy formulation in the TRB but also provides a useful reference for similar studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call