Abstract
The safety and serviceability of long-span bridges can be significantly impacted by wind effects and therefore it is crucial to estimate them accurately during bridge design. This study develops full-scale three-dimensional computational fluid dynamics (CFD) simulation models to replicate wind conditions at the Rose Fitzgerald Kennedy Bridge in Ireland. The neglect of bridge geometries and the use of small scales in previous studies are significant limitations, and both the bridge geometry and surrounding terrain are included here at full scale. Input values for wind conditions are mapped from weather simulations that apply the weather research and forecasting model. Wind velocities at four different points calculated by CFD simulations are compared with corresponding data collected from structural health monitoring field measurements. The calculated time-averaged wind velocities at four different locations on the bridge are shown to have relative differences of less than 10% from the wind velocities measured by anemometers 90% of the time. The maximum relative difference among all comparisons was only 15%, shown to be partially due to the inclusion of the full bridge and terrain geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Civil Engineers - Bridge Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.