Abstract

Recently, several significant progresses have been made on the studies of extracellular and intracellular ice formation based on high-speed camera and cryomicroscope. This experimental methodology could accurately capture the rapid formation process of ice crystals at microscale. However, quantitative interpretation on such phase change behavior still reserved a tough issue. Here, in this paper, we quantitatively studied the ice crystals growth in three kinds of cryoprotectants like dimethyl sulfoxide (DMSO), sucrose, and trehalose via high-speed camera, cryomicroscope as well as the proposed data processing method. Several critical impact factors such as the concentration of cryoprotectants and the cooling rate have been investigated. Particularly, an efficient image processing technology has been developed to quantify the growth rate and morphology of the ice crystals. The results indicate that the species and concentration of cryoprotectants and the cooling rate could significantly affect the growth rate and morphology of ice crystals. DMSO is better than trehalose and sucrose as cryoprotectant because of the molecular structure. This work established a new methodology to quantify the ice crystals growth and would enhance current understanding of the factors for ice crystals formation. It is also expected to help optimize the cryopreservation process in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call