Abstract

Humans obtain characteristic information such as texture and weight of external objects, relying on the brain's integration and classification of tactile information; however, the decoding mechanism of multi-level tactile information is relatively elusive from the temporal sequence. In this paper, nonvariant frequency, along with the variant pulse width of electrotactile stimulus, was performed to generate multi-level pressure sensation. Event-related potentials (ERPs) were measured to investigate the mechanism of whole temporal tactile processing. Five ERP components, containing P100-N140-P200-N200-P300, were observed. By establishing the relationship between stimulation parameters and ERP component amplitudes, we found the following: (1) P200 is the most significant component for distinguishing multi-level tactile sensations; (2) P300 is correlated well with the subjective judgment of tactile sensation. The temporal sequence of brain topographies was implemented to clarify the spatiotemporal characteristics of the tactile process, which conformed to the serial processing model in neurophysiology and cortical network response area described by fMRI. Our results can help further clarify the mechanism of tactile sequential processing, which can be applied to improve the tactile BCI performance, sensory enhancement, and clinical diagnosis for doctors to evaluate the tactile process disorders by examining the temporal ERP components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call