Abstract

The fine chemical industry is currently facing challenges in energy saving, material conservation, and pollution reduction due to the dual policy pressure of precise system management and collaborative pollution and carbon reduction. However, the interweaving of materials and energy input-output was not well understood due to the incomplete coverage and the lack of a generic framework. Therefore, a methodology based on the energy-material-pollution (E-M-P) coupling nexus was proposed to quantitatively assess multi-level coupling. According to the selected generic 32 coupling units, two representative glyphosate (PMG) production processes were taken as case studies. Quantification results showed that the solvent element and the material system had a higher priority. Moreover, Process 2 owned a greater optimization potential as the coupling relationship pairs were 2.55 compared to 2.32 for Process 1, and the correlation proportions of material systems reached 69.26 % and 56.92 %, respectively. In addition, assessment results indicated that Process 2 was more environmentally friendly because of the lower ecological indexes (9.7 GPt vs. 15.8 GPt) and weaker carbon footprint (CF) (1.16E+08 vs. 2.32E+08). Combined coupling nexus and environmental assessment organically, methanol had the most optimization potential and was beneficial for the measures such as solvent substitution. This work offered theory and practice guidance with demonstrative value to support the sustainable development of precise system management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call