Abstract
Grain boundaries act as bottlenecks to charge transport in devices comprising polycrystalline organic active layers. To improve device performance, the nature and resulting impact of these boundaries must be better understood. The densities and energy levels of shallow traps within and across triethylsilylethynyl anthradithiophene (TES ADT) spherulites are quantified. The trap density is 7 × 1010 cm−2 in devices whose channels reside within a single spherulite and up to 3 × 1011 cm−2 for devices whose channels span a spherulite boundary. The activation energy for charge transport, EA, increases from 34 meV within a spherulite to 50–66 meV across a boundary, depending on the angle of molecular mismatch. Despite being molecular in nature, these EA’s are more akin to those found for charge transport in polymer semiconductors. Presumably, trapped TES ADT at the boundary can electrically connect neighboring spherulites, similar to polymer chains connecting crystallites in polymer semiconductor thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.