Abstract

Energetic feedbacks play important roles during the El Nino-Southern Oscillation (ENSO). Here we conduct a thorough analysis of the radiative and non-radiative vertical fluxes and compare them to horizontal energy transport to provide a complete view of the energetics of ENSO. Our analyses affirm that cloud feedbacks are the most important radiative feedbacks, with cloud shortwave (SW) and longwave (LW) feedbacks dominating at the surface and in the atmosphere respectively. Oceanic energy transport dominates the oceanic heat content change in the developing phase and has significant effects on the sea surface temperature (SST) about 6 months earlier than vertical fluxes. Atmospheric horizontal energy transport is also important, acting to quickly remove the surplus of energy provided by the convergence of vertical energy fluxes in the atmosphere. The differential diabatic heating between the Central Pacific and the Warm Pool, induced by the latent heat release as well as LW radiation, strengthens the anomalous circulation and reinforces the Bjerknes positive feedback to strengthen the SST anomaly. This work reveals that the differential heating is more strongly correlated with the SST anomaly in the Central Pacific than the local SW negative feedback of clouds and supports the idea that the overall atmospheric effect is likely a positive feedback that acts to strengthen ENSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.