Abstract

This study quantifies the effects of topographic aspect on surface fine fuel moisture content (FFMC) in order to better represent landscape-scale variability in fire risk. Surface FFMC in a eucalypt forest was measured from December to May (180 days) on different aspects using a novel method for in situ monitoring of moisture content (GWClit) and temperature (Tlit) in litter. Daily mean GWClit varied systematically with aspect. North (0.07 ≤ GWClit ≤ 1.30 kg kg–1) and south (0.11 ≤ GWClit ≤ 1.83 kg kg–1) aspects were driest and wettest respectively, whereas east and west were somewhere in between. On the warmest day (38.9°C), the maximum Tlit on north (43.7°C) and south (29.8°C) aspects differed by 13.9°C. Aspect-driven variation in Tlit and GWClit is exacerbated by vegetation, which increases markedly in density with decreasing solar exposure. GWClit was below fibre saturation point (<0.35 kg kg–1) on 49 and 128 days on south and north aspects, respectively, demonstrating that fuels beds are often in different stages of drying and therefore subject to different hydrological processes depending on landscape position. This terrain-related variability in moisture dynamics strongly affects the spatial connectivity of fuels, and may be more important for predicting landscape-scale burn outcomes than sub-daily fluctuations at a point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.