Abstract

Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic–terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness) from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

Highlights

  • Worldwide, shorelines adjacent to bodies of fresh and salt waters face faster urbanization and population growth than other geographic regions (Neumann et al, 2015)

  • Mean effect size was stronger in higher shoreline elevations where armoring had previously been directly placed (Base of the Armoring: t0.05(2),73 = 8.44, p < 0.001, 95% CI: 1.14, 1.85; On the Armoring: t0.05(2),73 = 10.24, p < 0.001, 95% CI: 1.98, 2.93)

  • Our analysis showed that overall, macroinvertebrate responses to restoration in coastal ecosystems are positive and substantial, which in turn can enhance prey availability for migratory fishes and seabirds and improve ecosystem health as a whole (Dugan et al, 2003; Heerhartz & Toft, 2015)

Read more

Summary

Introduction

Shorelines adjacent to bodies of fresh and salt waters face faster urbanization and population growth than other geographic regions (Neumann et al, 2015). How to cite this article Lee et al (2018), Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound. About 50% of the world’s population lives within 200 km from the coastlines and half of the world’s major city centers are located within 50 km from coasts (Stegeman & Solow, 2002; MEA, 2005). Many of these heavily populated coastal regions are in low-lying elevations. In 2000 these low-elevation coastal zones included nearly 11% of the world’s total coastal population, but by 2060 it is estimated that the population in these low-elevation coastal zones will be as great as 1.4 billion, or 12% of the world’s population (Neumann et al, 2015)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.