Abstract

AbstractRiparian forest vegetation is widely believed to protect riverbanks from erosion, but few studies have quantified the effect of riparian vegetation removal on rates of river channel migration. Measured historical changes in a river channel centreline, combined with mapped changes in floodplain vegetation, provide an opportunity to test how riparian vegetation cover affects the erodibility of riverbanks. We analysed meander migration patterns from 1896 to 1997 for the central reach of the Sacramento River between Red Bluff and Colusa, using channel planform and vegetation cover data compiled from maps and aerial photography. We used a numerical model of meander migration to back‐calculate local values for bank erodibility (i.e. the susceptibility of bank materials to erosion via lateral channel migration, normalized for variations in near‐bank flow velocities due to channel curvature). A comparison of migration rates for approximately 50 years before and after the construction of Shasta dam suggests that bank migration rates and erodibility increased roughly 50%, despite significant flow regulation, as riparian floodplains were progressively converted to agriculture. A comparison of migration rates and bank erodibilities between 1949 and 1997, for reaches bordered by riparian forest versus agriculture, shows that agricultural floodplains are 80 to 150% more erodible than riparian forest floodplains. An improved understanding of the effect of floodplain vegetation on river channel migration will aid efforts to predict future patterns of meander migration for different river management and restoration scenarios. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call