Abstract
Sparse matrix-vector multiplication (SpMV) is the core operation in many common network and graph analytics, but poor performance of the SpMV kernel handicaps these applications. This work quantifies the effect of matrix structure on SpMV performance, using Intel's VTune tool for the Sandy Bridge architecture. Two types of sparse matrices are considered: finite difference (FD) matrices, which are structured, and R-MAT matrices, which are unstructured. Analysis of cache behavior and prefetcher activity reveals that the SpMV kernel performs far worse with R-MAT matrices than with FD matrices, due to the difference in matrix structure. To address the problems caused by unstructured matrices, novel architecture improvements are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.