Abstract

Ultrafiltration experiments were conducted to study the fouling potential of colloidal suspensions under different ionic strengths and colloid concentrations. A linear relationship was found relating the colloidal fouling potential to the logarithm of the Debye–Hückel parameter, a characteristic for electrical double layers of colloids. This finding provided a useful quantitative linkage between the colloidal fouling potential and the water chemistry. Considering the linear dependence of colloidal fouling potential on the colloid concentration, a bilinear model was proposed to explain the coupling effects of colloid concentration and ionic strength of the suspension on the fouling potential. The model predictions of fouling potential were found to fit accurately with experimentally determined fouling potential values. Further analysis of the model showed that ionic strength can significantly affect colloidal fouling, for example, a 10-fold increase in ionic strength from 0.001 to 0.01 M for a given feed concentration has the same membrane fouling effect as doubling the feed concentration. The model allows for a quick and reliable assessment of fouling potential without even performing any experiments. This could then be used to design the membrane process or pretreatment stages required to mitigate membrane fouling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.