Abstract

The average contribution of individual residue to folding stability and its dependence on buried accessible surface area (ASA) are obtained by two different approaches. One is based on experimental mutation data, and the other uses a new knowledge-based atom-atom potential of mean force. We show that the contribution of a residue has a significant correlation with buried ASA and the regression slopes of 20 amino acid residues (called the buriability) are all positive (pro-burial). The buriability parameter provides a quantitative measure of the driving force for the burial of a residue. The large buriability gap observed between hydrophobic and hydrophilic residues is responsible for the burial of hydrophobic residues in soluble proteins. Possible factors that contribute to the buriability gap are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.