Abstract

Clathrin-mediated endocytosis is a major pathway of internalization of cargo molecules in eukaryotic cells. This process involves the recruitment of cargo molecules into a growing clathrin-coated pit (CCP). However, cargo-CCP interactions are difficult to study because CCPs display a large degree of lifetime heterogeneity and the interactions with cargo molecules evolve over time. We use single-molecule total internal reflection fluorescence (TIRF) microscopy, in combination with automatic detection and tracking algorithms, to directly visualize the recruitment of individual voltage-gated potassium channels into forming CCPs in living cells. Contrary to widespread ideas, cargo often escapes from a pit before abortive CCP termination or endocytic vesicle production. Surprisingly, the binding times of cargo molecules associating to CCPs are much shorter than the overall endocytic process. By measuring tens of thousands of capturing events, we build the distribution of capture times and the times that cargo remains confined to a CCP. An analytical stochastic model is developed and compared to the measured distributions. Due to the dynamic nature of the pit, the model is non-Markovian and it displays long-tail power law statistics. Our findings identify one source of the large heterogeneities observed in CCP maturation and provide a mechanism for the anomalous diffusion of proteins in the plasma membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.