Abstract

AbstractRaw materials costs form an increasingly significant proportion of the total costs of renewable energy technologies that must be adopted at unprecedented rates to combat climate change. As the affordable deployment of these technologies grows vulnerable to materials price changes, effective strategies must be identified to mitigate the risk of higher input costs faced by manufacturers. To better understand potential threats to deployment, a market modeling approach was developed to quantify economic risk factors including material demand, substitutability, recycling, mining productivity, resource quality, and discovery. Results demonstrate that price changes are determined by interactions between demand growth, mining productivity, and resource quality. In the worst cases with high demand and low productivity, development of material substitutes and large recycling rates help reduce the prevalence of price risk from over 90% to under 10%. Investing in these strategies yields significant benefits for manufacturers and governments concerned about costs of materials critical to decarbonization and other advanced technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call