Abstract

Cropland area in north-western China has quadrupled over the past 50 years. The effects of this rapid expansion on regional carbon and water budgets have not been examined quantitatively. In this study, an enhanced Biome-BGC model including crop growth processes was used to quantify the effects on regional net primary productivity (NPP) and evapotranspiration (ET) in a representative catchment. The model results were in good agreement with biometric measurements. The catchment-scale total NPP (TNPP) and total ET (TET) increased by 81.8% and 89.4%, respectively. The increase in cropland area (LUCC) explained 40.3% and 60.5% of the increased TNPP and TET, while management practices (Mana) accounted for 46.1% and 16.8% of the increased TNPP and TET, respectively. Climate change (CLM) had the least influence on the increase in TNPP and TET (accounting for 1.8% and 4.7%). As assuming no interactions between CLM and LUCC, we detected effects of interactions between CLM and Mana (accounting for 10% and 16.8%) and between Mana and LUCC (accounting for 1.8% and 4.7%) on the increased TNPP and TET. These results implied that the rapid expansion of cropland and intensive agricultural management practices had important effects on regional carbon and water budgets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.