Abstract

Abstract. Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m−3 for 24 h average PM10 and 60 μg m−3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011–June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10–2.5 mass. Local pollution episodes (wind speed < 1 m s−1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m−3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m−3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.

Highlights

  • Population growth, urbanisation and industrial development have led to increasing emissions, resulting in particulate matter (PM) mass loadings that frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m−3 for 24 h average PM10 and 60 μg m−3 for 24 h average PM2.5 mass loadings

  • Several authors reported that during the summer season, coarse-mode mineral dust with a single peak at 3–4 μm optical equivalent diameter dominates PM mass loadings in the Indo-Gangetic Plain (IGP) (Gautam et al, 2011; Kaskaoutis et al, 2013); we find that fine-mode particulate matter (PM2.5) contributes almost to PM mass loadings, and a significant fraction of PM2.5 mass is still combustion derived

  • At our suburban receptor site further downwind of the burning fields, we find that PM10 generally ranges between 100 and 200 μg m−3 and exceeds 200 μg m−3 only during a few episodes

Read more

Summary

Introduction

Population growth, urbanisation and industrial development have led to increasing emissions, resulting in particulate matter (PM) mass loadings that frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m−3 for 24 h average PM10 and 60 μg m−3 for 24 h average PM2.5 mass loadings. This exposes the residents to hazardous levels of PM throughout the year. The effect of moderate to low PM mass loadings on human health was recognised much later (Shy, 1979; Ware et al, 1981; Dockery et al, 1989, 1993; Schwartz, 1994; Pope III et al, 1995; Pope III, 2000) and the accumulated evidence has resulted in a revision of the air quality standards in many countries including India (NAAQS, 2009)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call