Abstract

The recycling of construction waste is key to reducing waste generation and CO2 emissions. This study aimed to develop a quantitative model for analyzing the carbon reduction potential of recycling construction, demolition, and renovation waste (CDRW) in Jiangsu province. The waste generation rate calculation method and nonlinear autoregressive artificial neural network model were used to estimate and predict CDRW generation. The life cycle assessment was performed to calculate the carbon reduction potential of recycling CDRW. In quantifying the carbon reduction potential, not only construction and demolition waste, but also renovation waste was considered for the first time. The results showed that the total carbon reduction potential of recycling CDRW increased from 3.94 Mt CO2e in 2000 to 58.65 Mt CO2e in 2020. Steel and concrete were the main contributors. By scenario analysis, the carbon reduction potential of fully recycling CDRW in 2020 increased by 37.79 Mt CO2e, a growth rate of 64%. The study further predicts future CDRW generation and the corresponding carbon reduction potential. Our conclusions indicate that 245.45 Mt of CDRW will be generated in 2030, and carbon reduction potential may reach 82.36 Mt CO2e. These results will help the government manage construction waste better and reach early achievement of the carbon peak target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call