Abstract

Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010–2019), mid (2050–2059), and late (2090–2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8–48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.

Highlights

  • The increasing size and severity of wildfires in the western US poses many ecological and societal challenges, which are likely to be compounded by on-going climate change [1,2,3,4]

  • Reducing tree density through thinning has been shown to reduce drought stress and increase growth and C sequestration relative to a fire-suppressed condition during dry periods [9,16]. These results suggest that management efforts to reduce high-severity wildfire risk and restore surface fire in southwestern ponderosa pine forests could help build the capacity to cope with changing climate

  • Fire-exclusion has increased the flammability of dry western conifer forests and restoring natural fire regimes in these systems is central to mitigating the effects of increasingly large disturbance events [49,50]

Read more

Summary

Introduction

The increasing size and severity of wildfires in the western US poses many ecological and societal challenges, which are likely to be compounded by on-going climate change [1,2,3,4]. Efforts to restore forest structure and ecosystem function in dry, fire-prone forests are expanding in scale, but have the potential to create a positive feedback with the climate system as the amount. Carbon Forest Restoration and Projected Climate design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call