Abstract

It is known that space weather harshly affects spacecraft performance, yet spacecraft operations and understanding the cause of anomalies can be challenging due to the complexity of environmental metrics. In this work, we analyse five metrics and in-situ measurements (Kp, Dst, and AE index, and high-energy proton and electron flux) throughout Solar Cycles 20–23 (1964 to 2008), and provide a baseline for the environment during the phases of the solar cycles (maximum, minimum, declining or ascending). We define increased activity as activity greater than two median absolute deviations (MADs) above the average activity for each phase. MAD is used, rather than standard deviation, because it is more resilient to outliers. The average and MAD values are tabulated in Table 3 to Table 6. We determine the probability that increased activity occurs 3, 14 or 30 days before a random day to distinguish between increased/quiet activities and to aid in correlating intensifications of the environment and anomalous satellite performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.