Abstract

The voltammetry of porous electroactive surfaces is investigated by simulation. The surface is modelled as a solid block penetrated by a regularly distributed array of cylindrical pores. The effect of the voltage scan rate and the geometry (in terms of pore depth, radius, and inter-pore separation) of the porous surface on the voltammetry is examined for both fully reversible and fully irreversible electrode kinetics. In the latter case, it is demonstrated that when the pores are relatively shallow, a predictable shift in peak potential is observed corresponding to an apparent catalytic effect. For deeper pores, voltammetry corresponding to thin-layer behaviour is observed. The limits under which these behaviours operate are elucidated. This work builds on a previous investigation into the apparent catalytic effect exhibited by nanoparticle modified electrodes Ward et al. (2013) [11].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.