Abstract

Recycling livestock manure in agroecosystems can maintain crop production, improve soil fertility, and reduce environmental losses. However, there has been no comprehensive assessment of synergies and trade-offs in the food-energy-soil-environment nexus under manure application. Here, we evaluate the sustainability of maize production under four fertilization regimes (mineral, mineral and manure mixed, manure, and no fertilization) from the aspect of food security, energy output, soil quality, and environmental impact based on a five-year field experiment. Manure and mineral mixed fertilization maintained grain and straw quantity and quality compared with mineral fertilization. Manure and mineral mixed fertilization increased stem/leaf ratio and field residue index by 9.1–28.9% and 4.5–17.9%, respectively. Manure also maintained the theoretical ethanol yield but reduced the straw biomass quality index by increasing ash. Further, manure application increased the soil quality index by 40.5% and reduced N2O emissions by 55.0% compared with mineral fertilization. Manure application showed the highest sustainability performance index of 19, followed by mineral (15), mixed (13), and without fertilization (8). In conclusion, manure application maintains food production and energy output, enhances soil quality, and reduces environmental impact, thereby improving the sustainability of maize production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.