Abstract
Easily computable quality metrics for measured medical data at point-of-care are important for imaging technologies involving offline reconstruction. Accordingly, we developed a new data quality metric for in vivo transversely-isotropic (TI) magnetic resonance elastography (MRE) based on a generalization of the widely accepted octahedral shear-strain calculation. The metric uses MRE displacement data and an estimate of the TI property field to yield a ‘stability map’ which predicts regions of low versus high accuracy in the resulting material property reconstructions. We can also calculate an average TI parameter stability (TIPS) score over all voxels in a region of interest for a given measurement to indicate how reliable the recovered mechanical property estimate for the region is expected to be. The calculation is rapid and places little demand on computing resources compared to the computationally intensive material property reconstruction from non-linear inversion (TI-NLI) of displacement fields, making it ideal for point-of-care evaluation of data quality. We test the predictions of the stability map for both simulated phantoms and in vivo human brain data. We used a range of different displacement datasets from vibrations applied in the anterior-posterior (AP), left-right (LR) and combined AP + LR directions. The TIPS and variability maps (noise sensitivity or variation from the mean of repeated MRE scans) were consistently anti-correlated. Notably, Spearman correlation coefficients ∣R∣>0.6 were found between variability and TIPS score for individual white matter tracts with in vivo data. These observations demonstrate the reliability and promise of this data quality metric to screen data rapidly in realistic clinical MRE applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.