Abstract
The phenomenon of spectral diffusion is common to a variety of inhomogeneously broadened systems. Spectral diffusion can be quantified through the frequency–frequency correlation function (FFCF), which is often approximated using observables from a variety of experimental techniques. We present a direct measurement of the temperature-dependent FFCF for excitons in semiconductor quantum wells using two-dimensional coherent spectroscopy. This technique enables the FFCF to be quantified without making any assumptions of the FFCF dynamics. Our results show that the Gauss–Markov approximation, which assumes exponential decay dynamics of the FFCF, is only valid for sample temperatures above 50 K. We compare our results with those obtained by the ellipticity and center-line slope measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.