Abstract

Sympatric flatfish predators may partition their resources in coastal environments to reduce competition and maximise foraging efficiency. However, the degree of spatial and temporal consistency in their trophic ecology is not well understood because dietary studies tend to overlook the heterogeneity of consumed prey. Increasing the spatial and temporal scale of dietary analyses can thus help to resolve predator resource use. We applied a stomach content and multi-tissue (liver and muscle) stable isotope (δ13 C, δ15 N and δ34 S) approach to investigate the feeding habits of two co-occurring flatfish predators, common dab (Limanda limanda) and European plaice (Pleuronectes platessa), across four bays on the Northumberland coast (UK) over short (hours), medium (days) and long (months) temporal scales. Stomach content analyses showed spatial consistencies in predator resource use, whereas stable isotope mixing models revealed considerable inter-bay diet variability. Stomach contents also indicated high dietary overlap between L. limanda and P. platessa, whilethe stable isotope data yielded low to moderate levels of overlap, with cases of complete niche separation. Furthermore, individual specialisation metrics indicated consistently low levels of specialisation among conspecifics over time. We document changes in resource partitioning in space and time, reflecting diet switching in response to local and temporal fluctuations of patchily distributed prey. This study highlights how trophic tracers integrated at multiple temporal and spatial scales (within tens of kilometres) provide a more integrative approach for assessing the trophic ecology of sympatric predators in dynamic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call