Abstract

With prevalence of electrophysiological data collected outside of the laboratory from portable, non-invasive modalities growing at a rapid rate, the quality of these recorded data, if not adequate, could affect the effectiveness of medical devices that depend of them. In this work, we propose novel methods to evaluate electrophysiological signal quality to determine how much of the data represents the physiological source of interest. Data driven models are investigated through Bayesian decision and deep learning-based methods to score unimodal (signal and noise recorded on same device) and multimodal (signal and noise each recorded from different devices) data, respectively. We validate these methods and models on three electroencephalography (EEG) data sets (N = 60 subjects) to score EEG quality based on the presence of ocular artifacts with our unimodal method and motion artifacts with our multimodal method. Further, we apply our unimodal source method to compare the performance of two different artifact removal algorithms. Our results show we are able to effectively score EEG data using both methods and apply our method to evaluate the performance of other artifact removal algorithms that target ocular artifacts. Methods developed and validated here can be used to assess data quality and evaluate the effectiveness of certain noise-reduction algorithms.

Highlights

  • Advancements in and availability of wearable technologies that can readily collect electrophysiological data from individuals in both controlled laboratory and real-world settings have been growing rapidly

  • The aims of this work are to (1) develop a continuous scoring method for data from a unimodal source when the noise can be measured directly from the same modality and apply it to EEG with ocular artifacts, (2) develop a continuous scoring method for data when the noise can only be measured from another modality, requiring multimodal sources, and apply it to EEG with motion artifacts, and (3) apply our developed scoring metric to evaluate artifact removal algorithms, comparing two artifact removal algorithms that target ocular artifacts

  • We present in this work two novel methods to score electrophysiological data signal quality

Read more

Summary

Introduction

Advancements in and availability of wearable technologies that can readily collect electrophysiological data from individuals in both controlled laboratory and real-world settings have been growing rapidly. As such, both the volume of available biometric data and its potential utility, if properly understood, are increasing. Both the volume of available biometric data and its potential utility, if properly understood, are increasing If these data are to be effectively applied and correctly interpreted, it is important to understand the quality of data being recorded. Unlike in clinical or research settings, electrophysiological data collected in the real world is often contaminated with noise that does not represent the physiological signal of interest.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call