Abstract

ABSTRACT Aeolian processes are important drivers of geomorphic change in cold regions. Because these processes often occur at slow timescales over large areas, it can be difficult to quantify rates using traditional field methods. In the Kangerlussuaq region of Greenland, strong katabatic winds have shaped distinct erosional landforms, or deflation patches, that appear to expand across the landscape. The modern erosion rate along the active margins, or scarps, of these deflation patches is unknown. We use Structure-from-Motion (SfM) photogrammetry to quantify the geomorphic change of ten deflation patches between 2014 and 2016. During the two-year study period, significant positive and negative change occurred at all sites, suggesting that deflation patches are active landforms and that geomorphic change is highly heterogeneous and localized. We observed significant change primarily along the scarps, while little to no change occurred in the center of the patches. Along the scarps, the mean negative change ranged from −0.7 to −2.5 cm, and erosion dominated in eight out of the ten deflation patches. The modern erosion rate appears to be lower than the century-scale rate of 2.5 cm yr−1 estimated from prior work using lichenometry, potentially because of the episodic nature of scarp retreat. Longer-term monitoring using these methods will help quantify the geomorphic response of this landscape to a rapidly changing regional climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.