Abstract

Remote water temperature measurements by Raman scattering is a perspective tool for in situ and/or real-time studies for inaccessible areas such as the Arctic region. State-of-the-art laser remote temperature detection techniques are based on temperature-dependent transformation of the Raman OH stretching vibration band. This study compared different approaches quantifying Raman OH-band spectra transformation with temperature: the two-color technique, deconvolution procedure, Raman difference spectroscopy, and centroid technique. Distilled water was probed remotely by compact Raman LIDAR, and the results demonstrated that the Raman OH-band centroid technique achieved the best temperature measurement accuracy (±0.15°C).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call