Abstract
Quantum coherence is a crucial resource in numerous quantum processing tasks. The robustness of coherence provides an operational measure of quantum coherence, which can be calculated for various states using semidefinite programming. However, this method depends on convex optimization and can be time-intensive, especially as the dimensionality of the space increases. In this study, we employ machine learning techniques to quantify quantum coherence, focusing on the robustness of coherence. By leveraging artificial neural networks, we developed and trained models for systems with different dimensionalities. Testing on data samples shows that our approach substantially reduces computation time while maintaining strong generalizability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.