Abstract

The objectives of this study are to quantify, based on remote sensing data, processes of land-cover change and to test a Markov-based model to generate short-term land-cover change projections in a region characterised by exceptionally high rates of change. The region of Lusitu, in the Southern Province of Zambia, has been a land-cover change 'hot spot' since the resettlement of 6000 people in the Lusitu area and the succession of several droughts. Land-cover changes were analysed on the basis of a temporal series of three multispectral SPOT images in three steps: (i) land-cover change detection was performed by combining the postclassification and image differencing techniques; (ii) the change detection results were examined in terms of proportion of land-cover classes, change trajectories and spatio-temporal patterns of change; (iii) the process of land-cover change was modelled by a Markov chain to predict land-cover distributions in the near future. The remote sensing approach allowed: (i) to quantify land-cover changes in terms of percentage of area affected and rates of change; (ii) to qualify the nature of changes in terms of impact on natural vegetation; (iii) to map the spatial pattern of land-cover change. 44% of the area has been affected by at least one change in land cover during the period 1986 to 1997. The average annual rate of land-cover change was 4.0%. Agricultural expansion was the dominant change process. Land-cover change trajectories highlighted the dynamic character of changes. The results obtained by applying a Markov chain for projecting future evolutions showed the continuing upward trend of bare soils and cultivated land, and the rapid downward trend of forests and other natural vegetation covers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.