Abstract

ABSTRACT As an important combination of behaviour and pattern in animals to resemble benign objects, biolog ical mimesis can effectively avoid the detection of their prey and predators. It at least dates back to the Permian in fossil records. The recognition of mimesis within fossil, however, might be subjective and lack quantitative analysis being only based on few fossils with limited information. To compensate for this omission, we propose a new method using a Siamese network to measure the dissimilarity between hypothetical mimics and their models from images. It generates dissimilarity values between paired images of organisms by extracting feature vectors and calculating Euclidean distances. Additionally, the idea of ‘transfer learning’ is adopted to fine-tune the Siamese network, to overcome the limitations of available fossil image pairs. We use the processed Totally-Looks-Like, a large similar image data set, to pretrain the Siamese network and fine-tune it with a collected mimetic-image data set. Based on our results, we propose two recommended image dissimilarity thresholds for judging the mimicry of extant insects (0–0.4556) and fossil insects (0–0.4717). Deep learning algorithms are used to quantify the mimicry of fossil insects in this study, providing novel insights into exploring the early evolution of mimicry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.