Abstract
AbstractRock glaciers (RGs) are normally used as “ground‐truth” observations to indicate the presence of permafrost, and hence extensively used in training permafrost distribution models. However, the unique structure and composition of RGs enhance ground cooling effects, leading to more favorable conditions for permafrost presence than in adjacent ground. We therefore hypothesized and confirmed that permafrost extent is overestimated using RG‐driven models. The results indicate that the permafrost zonation index was overestimated by about 8.4%–13.1% in a model driven by RG observations compared to a model using in situ measurements of permafrost presence/absence. The bias is particularly pronounced in discontinuous permafrost region, where it is thought to be highly sensitive to climate change, resulting in about a 41.8%–90.8% overestimation in permafrost region and 7.0%–18.6% misclassification. In order to better use the large RG datasets available to understand permafrost conditions, we provide a method to correct this bias in a fundamental model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.