Abstract
One of the main criticisms of the theory of collections of indiscernible objects is that once we quantify over one of them, we are quantifying over all of them since they cannot be discerned from one another. In this way, we would call the collapse of quantifiers: ‘There exists one x such as P’ would entail ‘All x are P’. In this paper we argue that there are situations (quantum theory is the sample case) where we do refer to a certain quantum entity, saying that it has a certain property, even without committing all other indistinguishable entities with the considered property. Mathematically, within the realm of the theory of quasi-sets \(\mathfrak {Q}\), we can give sense to this claim. We show that the above-mentioned ‘collapse of quantifiers’ depends on the interpretation of the quantifiers and on the mathematical background where they are ranging. In this way, we hope to strengthen the idea that quantification over indiscernibles, in particular in the quantum domain, does not conform with quantification in the standard sense of classical logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.