Abstract

The classical Bardeen−Cooper−Schrieffer and Eliashberg theories of the electron−phonon-mediated superconductivity are based on the Migdal theorem, which is an assumption that the energy of charge carriers, kBTF, significantly exceeds the phononic energy, ℏωD, of the crystalline lattice. This assumption, which is also known as adiabatic approximation, implies that the superconductor exhibits fast charge carriers and slow phonons. This picture is valid for pure metals and metallic alloys because these superconductors exhibit ℏωDkBTF<0.01. However, for n-type-doped semiconducting SrTiO3, this adiabatic approximation is not valid, because this material exhibits ℏωDkBTF≅50. There is a growing number of newly discovered superconductors which are also beyond the adiabatic approximation. Here, leaving aside pure theoretical aspects of nonadiabatic superconductors, we classified major classes of superconductors (including, elements, A-15 and Heusler alloys, Laves phases, intermetallics, noncentrosymmetric compounds, cuprates, pnictides, highly-compressed hydrides, and two-dimensional superconductors) by the strength of nonadiabaticity (which we defined by the ratio of the Debye temperature to the Fermi temperature, TθTF). We found that the majority of analyzed superconductors fall into the 0.025≤TθTF≤0.4 band. Based on the analysis, we proposed the classification scheme for the strength of nonadiabatic effects in superconductors and discussed how this classification is linked with other known empirical taxonomies in superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.