Abstract

We study non-Markovian effects present in a driven qubit coupled to a finite environment using a recently proposed model developed in the context of calorimetric measurements of open quantum systems. To quantify the degree of non-Markovianity we use the Breuer-Laine-Piilo (BLP) measure [Breuer \textit{et al.}, Phys. Rev. Lett. \textbf{103}, 210401 (2009)]. We show that information backflow only occurs in the case of driving in which case we investigate the dependence of memory effects on the environment size, driving amplitude and coupling to the environment. We show that the degree of non-Markovianity strongly depends on the ratio between the driving amplitude and the coupling strength. We also show that the degree of non-Markovianity does not decrease monotonically as a function of the environment size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.