Abstract

In order to assess the importance of mercury emissions from naturally enriched sources relative to anthropogenic point sources, data must be collected that characterizes mercury emissions from representative areas and quantifies the influence of various environmental parameters that control emissions. With this information, we will be able to scale up natural source emissions to regional areas. In this study in situ mercury emission measurements were used, along with data from laboratory studies and statistical analysis, to scale up mercury emissions for the naturally enriched Ivanhoe Mining District, Nevada. Results from stepwise multi-variate regression analysis indicated that lithology, soil mercury concentration, and distance from the nearest fault were the most important factors controlling mercury flux. Field and lab experiments demonstrated that light and precipitation enhanced mercury emissions from alluvium with background mercury concentrations. Diel mercury emissions followed a Gaussian distribution. The Gaussian distribution was used to calculate an average daily emission for each lithologic unit, which were then used to calculate an average flux for the entire area of 17.1 ng Hg m −2 h −1. An annual emission of ∼8.7×10 4 g of mercury to the atmosphere was calculated for the 586 km 2 area. The bulk of the Hg released into the atmosphere from the district (∼89%) is from naturally enriched non-point sources and ∼11% is emitted from areas of anthropogenic disturbance where mercury was mined. Mercury emissions from this area exceed the natural emission factor applied to mercury rich belts of the world (1.5 ng m −2 h −1) by an order of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call