Abstract

This is a case-control study of prospectively collected data. To quantify paraspinal muscle size asymmetry in adolescent idiopathic scoliosis (AIS) and determine if this asymmetry is (i) greater than observed in adolescent controls with symmetrical spines; and (ii) positively associated with skeletal maturity using Risser grade, scoliosis severity using the Cobb angle, and chronological age in years. AIS is a three-dimensional deformity of the spine which occurs in 2.5% to 3.7% of the Australian population. There is some evidence of asymmetry in paraspinal muscle activation and morphology in AIS. Asymmetric paraspinal muscle forces may facilitate asymmetric vertebral growth during adolescence. An asymmetry index [Ln(concave/convex volume)] of deep and superficial paraspinal muscle volumes, at the level of the major curve apex (Thoracic 8-9 th vertebral level) and lower-end vertebrae ( LEV , Thoracic 10-12 th vertebral level), was determined from three-dimensional Magnetic Resonance Imaging of 25 adolescents with AIS (all right thoracic curves), and 22 healthy controls (convex=left); all female, 10 to 16 years. Asymmetry index of deep paraspinal muscle volumes was greater in AIS (0.16±0.20) than healthy spine controls (-0.06±0.13) at the level of the apex ( P <0.01, linear mixed-effects analysis) but not LEV ( P >0.05). Asymmetry index was positively correlated with Risser grade ( r =0.50, P <0.05) and scoliosis Cobb angle ( r =0.45, P <0.05), but not age ( r =0.34, P >0.05). There was no difference in the asymmetry index of superficial paraspinal muscle volumes between AIS and controls ( P >0.05). The asymmetry of deep apical paraspinal muscle volume in AIS at the scoliosis apex is greater than that observed at equivalent vertebral levels in controls and may play a role in the pathogenesis of AIS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call