Abstract

BackgroundSpecies turnover is typically measured by partitioning diversity components into alpha and pairwise beta diversity. However, alpha and beta components cannot express the full spectrum of multiple-site compositional turnover. To this end, zeta diversity has been proposed as an extended framework to allow complete biodiversity partitioning and to measure multiple-site species turnover. We use a zeta-diversity framework to explore the turnover and potential community assembly processes of an African Montane Forest.MethodsUsing a 20 m grid, we explore the species turnover in a 4.55 ha forest plot located in the Garden Route National Park of South Africa, with 47 and 27 canopy and sub-canopy tree species in the regional pool. We first calculate how zeta diversity declines and how the probability of retention of species with particular occupancies changes with increasing zeta orders (i.e. the number of sites [grid cells] involved in the calculation). Using null models with row sums and column sums constrained respectively, we explore whether species turnover is driven by mechanisms of ecological differences (species-specific occupancies) or habitat heterogeneity (site-specific alpha diversity and thus environmental filters).ResultsThe decline of zeta diversity with zeta order followed a power law; that is, the probability of retention increased with species occupancies, suggesting common species being more likely to be discovered in extra sites. The null model retaining row sums (species’ occupancy) of the species-by-site matrix recreated perfectly the decline of zeta diversity, while the null model of habitat heterogeneity (retaining column sums) was rejected. This suggests that mechanisms driving species-specific occupancies (i.e. ecological differences between species) dictate the multi-site species turnover in the community. The spatial patterns of zeta diversity revealed little spatial structuring forces, supporting a fine-grain structure in these southern Cape forests.ConclusionsThe framework of zeta diversity revealed mechanisms driving the large discrepancies in the occupancy among species that are behind the species turnover in the African Montane forest plot. Future studies could further link species turnover to spatial distance decay. Environmental filters and temporal turnover from landscape demography could bring a cohesive understanding of community assembly in these unique forest ecosystems.

Highlights

  • Species turnover is typically measured by partitioning diversity components into alpha and pairwise beta diversity

  • To further infer the possible mechanisms behind the likely ecological differences between species that drive species turnover in the community, we explored the parametric form of zeta diversity decline

  • We can argue that species turnover in this community is completely determined by factors of ecological differences and has little to do with site/habitat heterogeneity

Read more

Summary

Introduction

Species turnover is typically measured by partitioning diversity components into alpha and pairwise beta diversity. As the foundation of these biodiversity patterns, the species-bysite matrix allows the immediate measurement of biodiversity composition and turnover within and across sites so that changes can be traced, assembly processes tentatively inferred, and environmental drivers identified (Dornelas et al 2014; McGill et al 2015). To this end, measures of species compositional turnover over space and time, best known under the banner of beta diversity, have been rapidly developed over the past decades, with their performance hotly contested (Magurran & Henderson 2010; Anderson et al 2011; Shimadzu et al 2015). When combined with environmental and trait measures, such diversity partitioning allows us to differentiate drivers or sensitive traits that are crucial to maintain within-site species coexistence from those that are responsible to cross-site differentiation (Lebrija-Trejos et al 2010; Hui et al 2013; Latombe et al 2017)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call