Abstract

Abstract. δ18O of atmospheric oxygen (δ18Oatm) undergoes millennial-scale variations during the last glacial period, and systematically increases during Heinrich stadials (HSs). Changes in δ18Oatm combine variations in biospheric and water cycle processes. The identification of the main driver of the millennial variability in δ18Oatm is thus not straightforward. Here, we quantify the response of δ18Oatm to such millennial events using a freshwater hosing simulation performed under glacial boundary conditions. Our global approach takes into account the latest estimates of isotope fractionation factor for respiratory and photosynthetic processes and make use of atmospheric water isotope and vegetation changes. Our modeling approach allows to reproduce the main observed features of a HS in terms of climatic conditions, vegetation distribution and δ18O of precipitation. We use it to decipher the relative importance of the different processes behind the observed changes in δ18Oatm. The results highlight the dominant role of hydrology on δ18Oatm and confirm that δ18Oatm can be seen as a global integrator of hydrological changes over vegetated areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.