Abstract

Small-sized microplastics (MPs) pose greater ecological toxicity due to their larger surface area, which makes them more likely to act as carriers for other pollutants and to be ingested by aquatic organisms. However, traditional visual analysis often neglects small-sized MPs and their associated ecological risk. This study utilized Laser Direct Infrared (LDIR) spectroscopy and traditional visual analysis to examine MPs in 31 sediment samples from Jinzhou Bay, a typical semi-enclosed bay located at the economic center of Dalian, China. The results showed significant heterogeneity in MP distribution, with averages of 1192 and 2361 items/kg dry weight reported by visual analysis and LDIR spectroscopy, respectively. LDIR spectroscopy identified MPs as small as 10 μm, with the majority of MPs (89.21 %) within the 10–250 μm range, and a significant proportion (46.45 %) between 10 and 50 μm among them. However, visual analysis was limited to detecting MPs >50 μm, and significant portions were identified between 50 and 100 μm (49.36 %) and 100–250 μm (31.01 %), missing a substantial fraction of smaller MPs. The predominant polymers identified were polyamide (PA), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and acrylonitrile butadiene styrene (ABS). LDIR spectroscopy demonstrated a strong positive correlation between MP abundance and clay content, a relationship not observed with traditional visual analysis. The Potential Ecological Risk Index (PERI) indicated that over 87 % of sites posed an extremely high risk according to LDIR spectroscopy, compared to 51 % by traditional visual analysis. These discrepancy underscores the underestimation of ecological risks by traditional methods, particularly for small-sized MPs. High-risk polymers such as polyvinyl chloride (PVC), ABS, and polyurethane (PUR) significantly influenced PERI values. These findings highlight the critical need for precise identification and thorough risk assessment of small-sized MPs in environmental studies and offer insights for understanding of MP vertical migration in aquatic environments, particularly in the context of co-settlement with sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.