Abstract

This work describes the theoretical basis and implementation of the measurement of vibrational (Tvib) and rotational (Trot) temperatures in CH4 by fitting spontaneous Raman scattering spectra in the Pentad region. This method could be applied for thermal equilibrium temperature measurements applications, e.g. in combustion, or vibrational-rotational non-equilibrium applications, such as in plasma chemistry.The method of calculating these temperatures is validated against known temperature thermal equilibrium spectra up to 860 K from published data, giving an estimated relative error of 10%. This demonstrates that both the calculated stick spectrum and the algorithm to determine Tvib and Trot for CH4 is robust to 860 K, but we expect it is valid to 1500 K. Additionally, a number of non-equilibrium spectra generated with a pulsed microwave plasma are fitted to find Tvib and Trot, further demonstrating the applicability of this method in fitting non-equilibrium spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.