Abstract

Methane (CH(4)) oxidation by aerobic methanotrophs in landfill-cover soils decreases emissions of landfill-produced CH(4) to the atmosphere. To quantify in situ rates of CH(4) oxidation we performed five gas push-pull tests (GPPTs) at each of two locations in the cover soil of the Lindenstock landfill (Liestal, Switzerland) over a 4 week period. GPPTs consist of the injection of a gas mixture containing CH(4), O(2) and noble gas tracers followed by extraction from the same location. Quantification of first-order rate constants was based upon comparison of breakthrough curves of CH(4) with either Ar or CH(4) itself from a subsequent inactive GPPT containing acetylene as an inhibitor of CH(4) oxidation. The maximum calculated first-order rate constant was 24.8+/-0.8 h(-1) at location 1 and 18.9+/-0.6 h(-1) at location 2. In general, location 2 had higher background CH(4) concentrations in vertical profile samples than location 1. High background CH(4) concentrations in the cover soil during some experiments adversely affected GPPT breakthrough curves and data interpretation. Real-time PCR verified the presence of a large population of methanotrophs at the two GPPT locations and comparison of stable carbon isotope fractionation of CH(4) in an active GPPT and a subsequent inactive GPPT confirmed that microbial activity was responsible for the CH(4) oxidation. The GPPT was shown to be a useful tool to reproducibly estimate in situ rates of CH(4) oxidation in a landfill-cover soil when background CH(4) concentrations were low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call