Abstract

The information-carrying capacity of a memory is known to be a thermodynamic resource facilitating the conversion of heat to work. Szilard's engine explicates this connection through a toy example involving an energy-degenerate two-state memory. We devise a formalism to quantify the thermodynamic value of memory in general quantum systems with nontrivial energy landscapes. Calling this the thermal information capacity, we show that it converges to the nonequilibrium Helmholtz free energy in the thermodynamic limit. We compute the capacity exactly for a general two-state (qubit) memory away from the thermodynamic limit, and find it to be distinct from known free energies. We outline an explicit memory-bath coupling that can approximate the optimal qubit thermal information capacity arbitrarily well.

Highlights

  • The information-carrying capacity of a memory is known to be a thermodynamic resource facilitating the conversion of heat to work

  • We devise a formalism to quantify the thermodynamic value of memory in general quantum systems with nontrivial energy landscapes

  • Calling this the thermal information capacity, we show that it converges to the nonequilibrium Helmholtz free energy in the thermodynamic limit

Read more

Summary

Introduction

The information-carrying capacity of a memory is known to be a thermodynamic resource facilitating the conversion of heat to work. Calling this the thermal information capacity, we show that it converges to the nonequilibrium Helmholtz free energy in the thermodynamic limit. We compute the capacity exactly for a general two-state (qubit) memory away from the thermodynamic limit, and find it to be distinct from known free energies.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.