Abstract

Membrane curvature plays an essential role in the organization and trafficking of membrane associated proteins. Comparison or prediction of the experimentally resolved protein concentrations adopted at different membrane curvatures requires direct quantification of the relative partitioning free energy. Here, we present a highly efficient and simple to implement a free-energy calculation method which is able to directly resolve the relative partitioning free energy of proteins as a direct function of membrane curvature, i.e., a curvature sensing profile, within (coarse-grained) molecular dynamics simulations. We demonstrate its utility by resolving these profiles for two known curvature sensing peptides, namely ALPS and α-synuclein, for a membrane curvature ranging from -1/6.5 to +1/6.5 nm-1. We illustrate that the difference in relative partitioning (binding) free energy between these two extrema is only about 13 kBT for both peptides, illustrating that the driving force of curvature sensing is subtle. Furthermore, we illustrate that ALPS and α-synuclein sense curvature via a contrasting mechanism, which is differentially affected by membrane composition. In addition, we demonstrate that the intrinsic spontaneous curvature of both of these peptides lies beyond the range of membrane curvature accessible in micropipette aspiration experiments, being about 1/7 nm -1. Our approach offers an efficient and simple to implement in silico tool for exploring and screening the membrane curvature sensing mechanisms of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.