Abstract
In seismic performance evaluations, the force-deformation response of a structure is typically assessed using a deterministic analytical model, and inherent uncertainty is often neglected. For reinforced concrete structures, a source of uncertainty is variability in the mechanical properties of reinforcing steel and concrete (that is, material uncertainty). This paper presents an analytical investigation to quantify the impact of the statistical variability in mechanical properties of ASTM A706 Grade 60, 80, and 100 reinforcing steel and normalweight concrete on the seismic response of reinforced concrete bridge columns. The effects on the drift response, expressed by the coefficient of variation (COV), range between COV values of 0.1 for low-to-moderate ductility demands (that is, drift ratio < 5%), and 0.3 for larger ductility demands. The COV of the force demand is lower, ranging between 0.05 and 0.1. Overall, the study shows that material uncertainty can be incorporated in seismic performance assessments through a few additional analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.