Abstract

Wearable sensors like inertial measurement units (IMUs), and those available as smartphone or smartwatch applications, are increasingly used to quantify lumbar mobility. Currently, wearable sensors have to be placed on the back to measure lumbar mobility, meaning it cannot be used in unsupervised environments. This study aims to compare lumbar sagittal plane angles quantified from a wrist-worn against that of a lumbar-worn sensor. Twenty healthy participants were recruited. An IMU was placed on the right wrist and the L3 spinal level. Participants had to position their right forearm on their abdomen, parallel to the floor. Three sets of three consecutive repetitions of flexion, and extension were formed. Linear mixed models were performed to quantify the effect of region (lumbar vs. wrist) on six outcomes [minimum, maximum, range of motion (ROM) of flexion and extension]. Only flexion ROM was significantly different between the wrist and lumbar sensors, with a mean of 4.54° (95% CI = 1.82°-7.27°). Across all outcomes, the maximal difference between a wrist-worn and lumbar-worn sensor was <8°. A wrist-worn IMU sensor could be used to measure gross lumbar sagittal plane mobility in place of a lumbar-worn IMU. This may be useful for remote monitoring during rehabilitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call