Abstract

ABSTRACT An isotope-enabled module of Hydrus-1D was applied to a potted olive tree to trace water parcels originating from 26 irrigation events in a glasshouse experiment. The soil hydraulic parameters were optimized via inverse modelling by minimizing the discrepancies between observed and simulated soil water content and soil water isotope (18O) values at three soil depths. The model’s performance was validated with observed sap flow z-scores and xylem water 18O. We quantified the source and transit time of irrigation water by analysing the mass breakthrough curves derived from a virtual tracer injection experiment. On average, 26% of irrigation water was removed by plant transpiration with a mean transit time of 94 hours. Our proof of concept work suggests that transit time may represent a functional indicator for the uptake of irrigation water in agricultural ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call